Intro to Tensor

Outline

What exactly can tensor do?

What is tensor

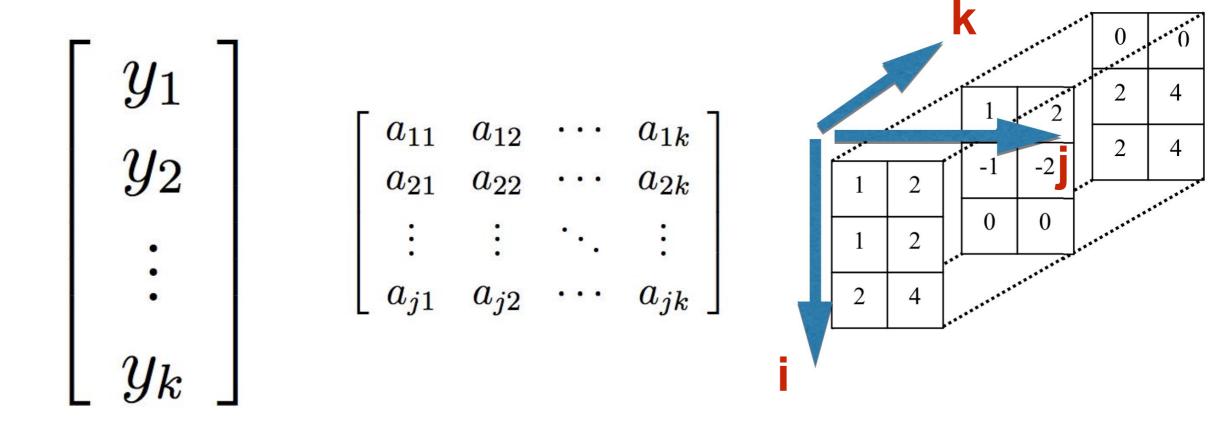
Notations and Preliminaries, e.g. multiplication

Tensor decomposition, e.g. CP, Tucker

Two applications of tensor decomposition

What is tensor

Tensor is a multidimensional array.



Matrix vs Tensor

Why do we need tensor / What can tensor do?

Matrix models relationship between **two** things; sometimes o ur objects are **more than two** things and they are **entangl ed** together.

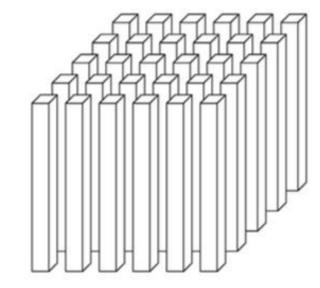
Notations

The order of tensor is the number of dimensions/ways/mo

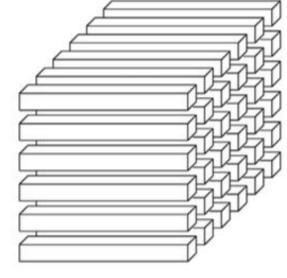
The *i*th entry of a vector **a** is denoted by a_i , element (i, j) of a matrix **A** is denoted by a_{ij} , and element (i, j, k) of a third-order tensor **X** is denoted by x_{ijk} .

$$\|\mathbf{\mathcal{X}}\| = \sqrt{\sum_{i_1=1}^{I_1} \sum_{i_2=1}^{I_2} \cdots \sum_{i_N=1}^{I_N} x_{i_1 i_2 \cdots i_N}^2}, \qquad \langle \mathbf{\mathcal{X}}, \mathbf{\mathcal{Y}} \rangle = \sum_{i_1=1}^{I_1} \sum_{i_2=1}^{I_2} \cdots \sum_{i_N=1}^{I_N} x_{i_1 i_2 \cdots i_N} y_{i_1 i_2 \cdots i_N}.$$

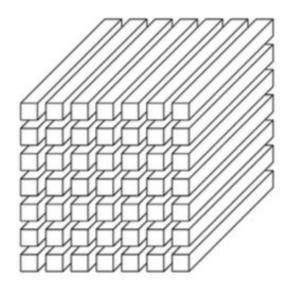
Fibers and slices



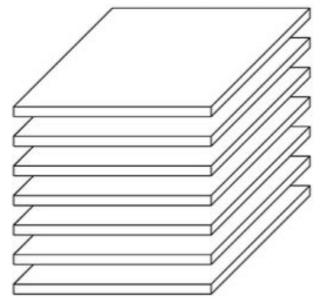
(a) Mode-1 (column) fibers: $\mathbf{x}_{:jk}$

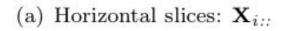


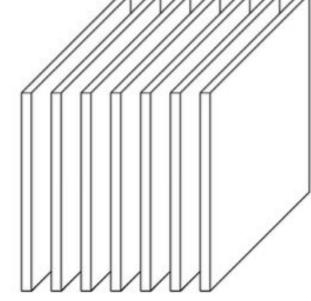
(b) Mode-2 (row) fibers: $\mathbf{x}_{i:k}$

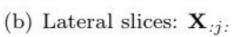


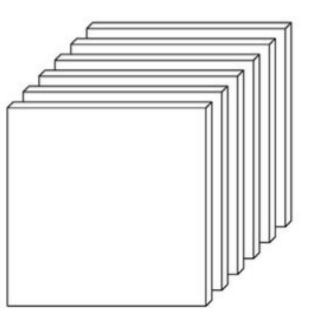
(c) Mode-3 (tube) fibers: \mathbf{x}_{ij} :

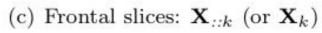












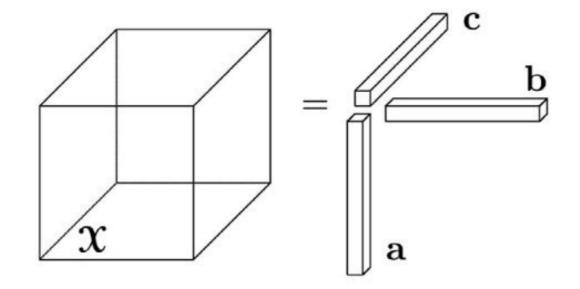
Preliminaries

1. Outer product of N vectors

 $\mathbf{X} = \mathbf{a}^{(1)} \circ \mathbf{a}^{(2)} \circ \cdots \circ \mathbf{a}^{(N)}$

$$x_{i_1 i_2 \cdots i_N} = a_{i_1}^{(1)} a_{i_2}^{(2)} \cdots a_{i_N}^{(N)}$$
 for all $1 \le i_n \le I_n$

2. Such x is called rank one tensor



Preliminaries

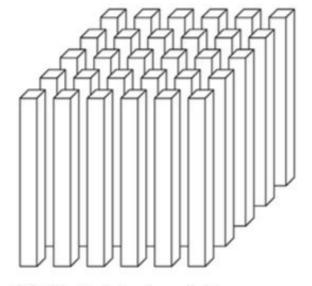
1.Matricization: transfer tensor into matrix

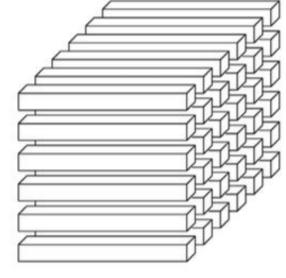
Mode-n matricization of tensor \mathfrak{X} is donated by $\mathbf{X}_{(n)}$ and arranges the mode-n fibers to be columns of the resulting matrix.

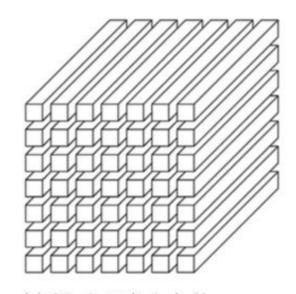
Tensor element (i_1, i_2, \ldots, i_N) maps to matrix element (i_n, j) , where

$$j = 1 + \sum_{\substack{k=1 \ k \neq n}}^{N} (i_k - 1) J_k$$
 with $J_k = \prod_{\substack{m=1 \ m \neq n}}^{k-1} I_m.$

$$\mathbf{x} = \begin{bmatrix} \mathbf{1} & \mathbf{3} & \mathbf{5} & \mathbf{7} \\ \mathbf{2} & \mathbf{4} & \mathbf{6} & \mathbf{8} \end{bmatrix}$$
$$\mathbf{x}_{(2)} = \begin{bmatrix} \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{6} \\ \mathbf{3} & \mathbf{4} & \mathbf{7} & \mathbf{8} \end{bmatrix}$$
$$\mathbf{x}_{(3)} = \begin{bmatrix} \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} \\ \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \end{bmatrix}$$

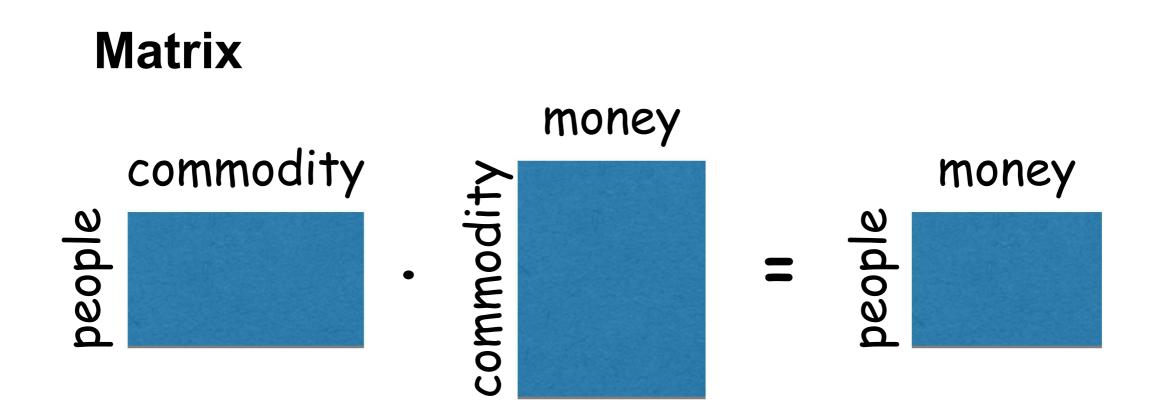






(c) Mode-3 (tube) fibers: $\mathbf{x}_{ij:}$

Tensor Multiplication



Tensor multiplication is very similar to that of matrix

Tensor Mode-n Multiplication

The *n*-mode (matrix) product of a tensor $\mathbf{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ with a matrix $\mathbf{U} \in \mathbb{R}^{J \times I_n}$ is denoted by $\mathbf{X} \times_n \mathbf{U}$ and is of size $I_1 \times \cdots \times I_{n-1} \times J \times I_{n+1} \times \cdots \times I_N$. Elementwise, we have

$$(\mathbf{X} \times_{n} \mathbf{U})_{i_{1} \cdots i_{n-1} j \, i_{n+1} \cdots i_{N}} = \sum_{i_{n}=1}^{I_{n}} x_{i_{1} i_{2} \cdots i_{N}} \, u_{j i_{n}}.$$
$$\mathbf{\mathcal{Y}} = \mathbf{X} \times_{\mathbf{2}} \mathbf{B} \in \mathbb{R}^{I \times M \times K} \left| \left| \begin{array}{c} \mathbf{Y} = \mathbf{X} \, \bar{\mathbf{X}}_{\mathbf{1}} \, \mathbf{a} \in \mathbb{R}^{J \times K} \end{array} \right|$$

The *n*-mode (vector) product of a tensor $\mathbf{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ with a vector $\mathbf{v} \in \mathbb{R}^{I_n}$ is denoted by $\mathbf{X} \times_n \mathbf{v}$. The result is of order N - 1, i.e., the size is $I_1 \times \cdots \times I_{n-1} \times I_{n+1} \times \cdots \times I_N$. Elementwise,

$$(\mathbf{X} \times_{n} \mathbf{v})_{i_{1} \cdots i_{n-1} i_{n+1} \cdots i_{N}} = \sum_{i_{n}=1}^{I_{n}} x_{i_{1} i_{2} \cdots i_{N}} v_{i_{n}}.$$
Multiply each
row (mode-2)
fiber by B
$$product of \boldsymbol{a} \text{ and}$$
each column
(mode-1) fiber

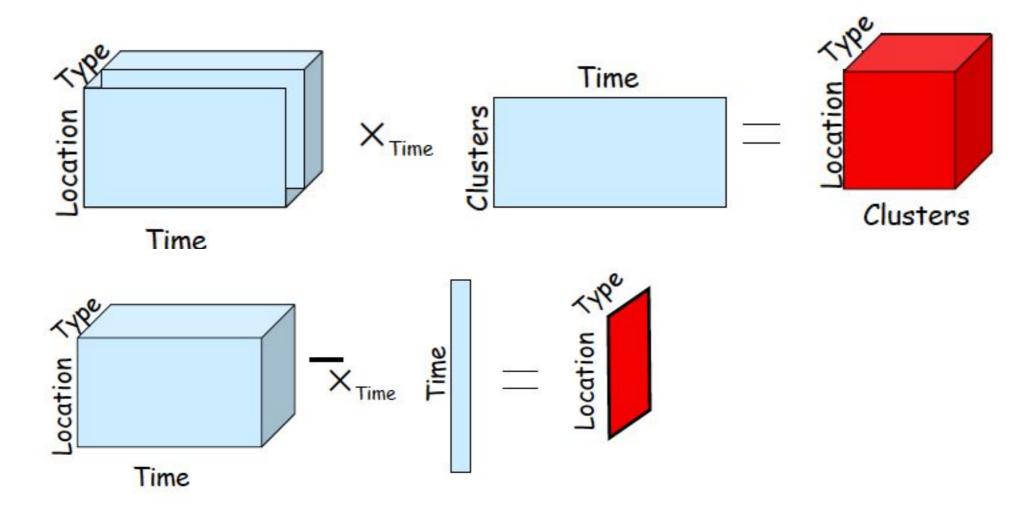
$$\mathbf{X}_{1} = \begin{bmatrix} 1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{bmatrix}, \quad \mathbf{X}_{2} = \begin{bmatrix} 13 & 16 & 19 & 22 \\ 14 & 17 & 20 & 23 \\ 15 & 18 & 21 & 24 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$
$$\mathbf{\mathcal{Y}} = \mathbf{\mathcal{X}} \times_1 \mathbf{U} \in \mathbb{R}^{2 \times 4 \times 2}$$
$$\mathbf{Y}_1 = \begin{bmatrix} 22 & 49 & 76 & 103 \\ 28 & 64 & 100 & 136 \end{bmatrix}, \quad \mathbf{Y}_2 = \begin{bmatrix} 130 & 157 & 184 & 211 \\ 172 & 208 & 244 & 280 \end{bmatrix}$$

Tensor Mode-n Multiplication

$$\mathbf{\mathcal{Y}} = \mathbf{\mathfrak{X}} imes_n \mathbf{U} \quad \Leftrightarrow \quad \mathbf{Y}_{(n)} = \mathbf{U} \mathbf{X}_{(n)}$$

 $\mathfrak{X} \times_m \mathbf{A} \times_n \mathbf{B} = \mathfrak{X} \times_n \mathbf{B} \times_m \mathbf{A} \quad (m \neq n)$



Tensor Decomposition

CP

Tucker

CP Decomposition

CP decomposition: express a tensor as the sum of finite nur

$$\mathbf{\mathcal{X}} \approx \sum_{r=1}^{R} \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$$

$$x_{ijk} \approx \sum_{r=1}^{R} a_{ir} \, b_{jr} \, c_{kr} \text{ for } i = 1, \dots, I, \ j = 1, \dots, J, \ k = 1, \dots, K$$

$$\mathbf{\mathcal{X}} \approx \mathbf{\mathbf{\mathbf{\int}}}_{\mathbf{a}_1}^{\mathbf{c}_1} \mathbf{\mathbf{\mathbf{\int}}}_{\mathbf{b}_1}^{\mathbf{c}_2} + \mathbf{\mathbf{\mathbf{\int}}}_{\mathbf{b}_2}^{\mathbf{c}_2} + \dots + \mathbf{\mathbf{\int}}_{\mathbf{a}_R}^{\mathbf{c}_R}$$

Tensor Rank

rank(\mathfrak{X}): the smallest number of rank-one tensors that generate \mathfrak{X}

$$\underset{R}{\text{minimize}} \quad \mathcal{X} = \sum_{r=1}^{\mathcal{R}} \mathbf{a_r} \circ \mathbf{b_r} \circ \mathbf{c_r}$$

Rank decomposition: exact CP decomposition with R = rank(X) components is called the rank decomposition

Compute CP

Rank decomposition is NP hard but unique.

Assuming the number of components is fixed, there are many algorithms to compute a CP decomposition, such as ALS.

Let $\mathfrak{X} \in \mathbb{R}^{I \times J \times K}$ be a third-order tensor. The goal is to compute a CP decomposition with R components that best approximates \mathfrak{X} , i.e., to find

(3.7)
$$\min_{\hat{\mathbf{X}}} \|\mathbf{X} - \hat{\mathbf{X}}\| \quad \text{with} \quad \hat{\mathbf{X}} = \sum_{r=1}^{R} \lambda_r \ \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r = [\![\mathbf{\lambda}]; \mathbf{A}, \mathbf{B}, \mathbf{C}]\!].$$

CP Computing — ALS

$$\min_{\hat{\mathbf{X}}} \|\mathbf{X} - \hat{\mathbf{X}}\| \quad \text{with} \quad \hat{\mathbf{X}} = \sum_{r=1}^{R} \lambda_r \ \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r = \llbracket \mathbf{\lambda} \ ; \mathbf{A}, \mathbf{B}, \mathbf{C} \rrbracket.$$

 The ALS approach fixes B and C to solve for A, then fixes A and C to solve for B, then fixes A and B to solve for C, and continues to repeat the entire procedure until some convergence criterion is satisfied.

```
procedure CP-ALS(\mathfrak{X}, R)

initialize \mathbf{A}^{(n)} \in \mathbb{R}^{I_n \times R} for n = 1, ..., N

repeat

for n = 1, ..., N do

\mathbf{V} \leftarrow \mathbf{A}^{(1)\mathsf{T}} \mathbf{A}^{(1)} * \cdots * \mathbf{A}^{(n-1)\mathsf{T}} \mathbf{A}^{(n-1)} * \mathbf{A}^{(n+1)\mathsf{T}} \mathbf{A}^{(n+1)} * \cdots * \mathbf{A}^{(N)\mathsf{T}} \mathbf{A}^{(N)}

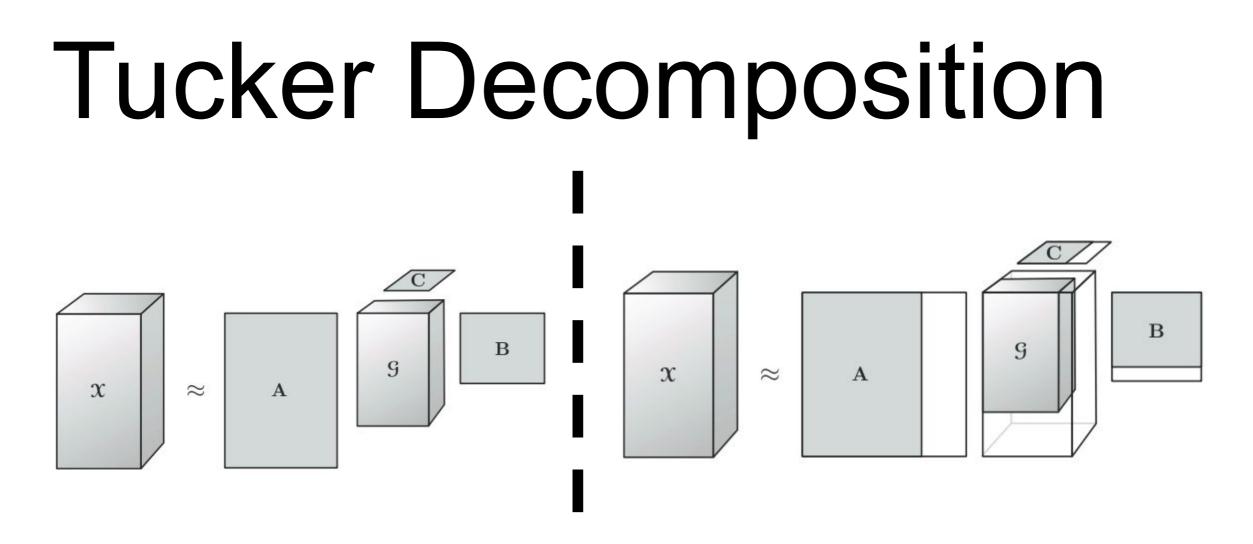
\mathbf{A}^{(n)} \leftarrow \mathbf{X}^{(n)} (\mathbf{A}^{(N)} \odot \cdots \odot \mathbf{A}^{(n+1)} \odot \mathbf{A}^{(n-1)} \odot \cdots \odot \mathbf{A}^{(1)}) \mathbf{V}^{\dagger}

normalize columns of \mathbf{A}^{(n)} (storing norms as \boldsymbol{\lambda})

end for

until fit ceases to improve or maximum iterations exhausted

return \boldsymbol{\lambda}, \mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \dots, \mathbf{A}^{(N)}
```



A, B and C are columnwise orthonormal (in most cases).

$$\mathbf{\mathfrak{X}} \approx \mathbf{\mathfrak{G}} \times_1 \mathbf{A} \times_2 \mathbf{B} \times_3 \mathbf{C} = \sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} g_{pqr} \mathbf{a}_p \circ \mathbf{b}_q \circ \mathbf{c}_r = \llbracket \mathbf{\mathfrak{G}} ; \mathbf{A}, \mathbf{B}, \mathbf{C} \rrbracket$$

 $x_{ijk} \approx \sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} g_{pqr} a_{ip} b_{jq} c_{kr} \quad \text{for} \quad i = 1, \dots, I, \ j = 1, \dots, J, \ k = 1, \dots, K.$

Tucker Computing

$\mathbf{X} \approx \mathbf{G} \times_1 \mathbf{A} \times_2 \mathbf{B} \times_3 \mathbf{C}$

HOSVD method: The basic idea is to find those components that best capture the variation in mode n, independent of the other modes.

```
procedure \text{HOSVD}(\mathbf{X}, R_1, R_2, \dots, R_N)
for n = 1, \dots, N do
\mathbf{A}^{(n)} \leftarrow R_n leading left singular vectors of \mathbf{X}_{(n)}
end for
\mathbf{\mathcal{G}} \leftarrow \mathbf{\mathcal{X}} \times_1 \mathbf{A}^{(1)\mathsf{T}} \times_2 \mathbf{A}^{(2)\mathsf{T}} \cdots \times_N \mathbf{A}^{(N)\mathsf{T}}
return \mathbf{\mathcal{G}}, \mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \dots, \mathbf{A}^{(N)}
end procedure
```

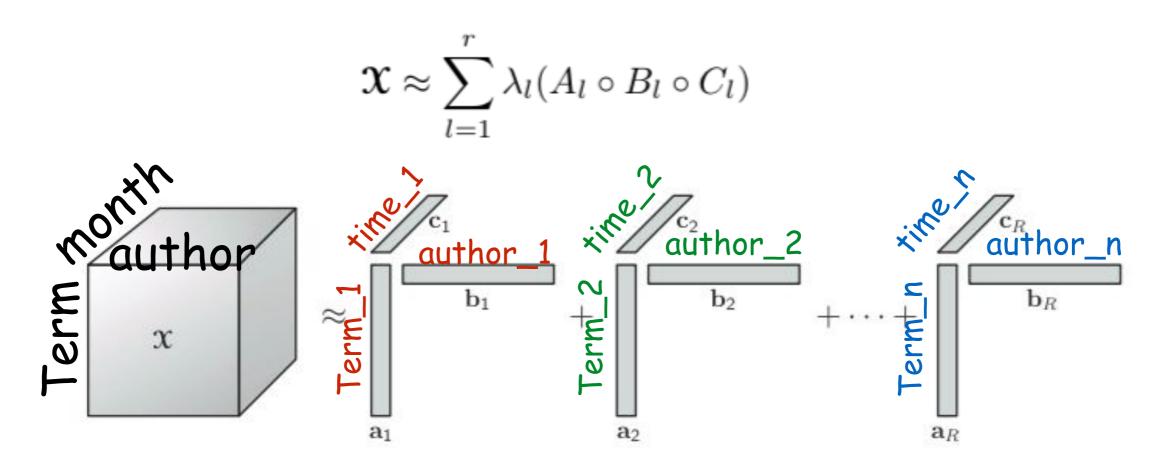
Tucker Computing

 $\begin{array}{l} \min_{\mathbf{g},\mathbf{A}^{(1)},\ldots,\mathbf{A}^{(N)}} & \left\| \mathbf{\mathcal{X}} - \left[\mathbf{g} \; ; \mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \ldots, \mathbf{A}^{(N)} \right] \right\| \\ \text{subject to} & \mathbf{g} \in \mathbb{R}^{R_1 \times R_2 \times \cdots \times R_N}, \\ & \mathbf{A}^{(n)} \in \mathbb{R}^{I_n \times R_n} \text{ and columnwise orthogonal for } n = 1, \ldots, N \end{array}$

procedure HOOI($\mathfrak{X}, R_1, R_2, \dots, R_N$) initialize $\mathbf{A}^{(n)} \in \mathbb{R}^{I_n \times R}$ for $n = 1, \dots, N$ using HOSVD repeat for $n = 1, \dots, N$ do $\mathfrak{Y} \leftarrow \mathfrak{X} \times_1 \mathbf{A}^{(1)\mathsf{T}} \cdots \times_{n-1} \mathbf{A}^{(n-1)\mathsf{T}} \times_{n+1} \mathbf{A}^{(n+1)\mathsf{T}} \cdots \times_N \mathbf{A}^{(N)\mathsf{T}}$ $\mathbf{A}^{(n)} \leftarrow R_n$ leading left singular vectors of $\mathbf{Y}_{(n)}$ end for until fit ceases to improve or maximum iterations exhausted $\mathfrak{G} \leftarrow \mathfrak{X} \times_1 \mathbf{A}^{(1)\mathsf{T}} \times_2 \mathbf{A}^{(2)\mathsf{T}} \cdots \times_N \mathbf{A}^{(N)\mathsf{T}}$ return $\mathfrak{G}, \mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \dots, \mathbf{A}^{(N)}$ end procedure

One CP Example

- Extract and detect meaningful discussions from Enron email
- term-author-month array χ



Brett W. Bader et. al, Discussion Tracking in Enron Email Using PARAFAC

One Tucker Example

- Suppose we have a dataset. Each picture contains: people with different poses and expressions under different illuminations.
- Construct people-view-illumimation-expression-pixels tensor
- D is 28 × 5 × 3 × 3 × 7943

$$\mathcal{D} = \mathcal{Z} \times_1 \mathbf{U}_{\text{people}} \times_2 \mathbf{U}_{\text{views}} \times_3 \mathbf{U}_{\text{illums}} \times_4 \mathbf{U}_{\text{expres}} \times_5 \mathbf{U}_{\text{pixels}}$$

where the $28 \times 5 \times 3 \times 3 \times 7943$ core tensor \mathcal{Z} governs the interaction between the factors represented in the 5 mode matrices: The 28×28 mode matrix $\mathbf{U}_{\text{people}}$ spans the space of people parameters, the 5×5 mode matrix $\mathbf{U}_{\text{views}}$ spans the space of viewpoint parameters, the 3×3 mode matrix $\mathbf{U}_{\text{illums}}$ spans the space of illumination parameters and the 3×3 mode matrix $\mathbf{U}_{\text{expres}}$ spans the space of expression parameters. The 7943×7943 mode matrix $\mathbf{U}_{\text{pixels}}$ orthonormally spans the space of images.

M. Alex O. Vasilescu and Demetri Terzopoulos, Multilinear Analysis of Image Ensembles: TensorFaces (ECCV 02)

Supplemental Materials

M. Alex O. Vasilescu (<u>http://alumni.media.mit.edu/~maov/rese</u> arch_index.html)